
Simple Object Access Protocol (SOAP) 1.1

Simple Object Access Protocol (SOAP) 1.1

W3C Note 08 May 2000

This version:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

Latest version:
http://www.w3.org/TR/SOAP

Authors (alphabetically):
Don Box, DevelopMentor
David Ehnebuske, IBM
Gopal Kakivaya, Microsoft
Andrew Layman, Microsoft
Noah Mendelsohn, Lotus Development Corp.
Henrik Frystyk Nielsen, Microsoft
Satish Thatte, Microsoft
Dave Winer, UserLand Software, Inc.

Copyright© 2000 DevelopMentor, International Business Machines Corporation, Lotus Development
Corporation, Microsoft, UserLand Software

Abstract

SOAP is a lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that consists of three parts: an envelope that
defines a framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a convention
for representing remote procedure calls and responses. SOAP can potentially be used in
combination with a variety of other protocols; however, the only bindings defined in this
document describe how to use SOAP in combination with HTTP and HTTP Extension
Framework.

Status

http://www.w3.org/TR/SOAP/ (1 of 42) [12/17/2001 10:21:41 AM]

http://www.w3.org/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
mailto:dbox@develop.com
mailto:davide@us.ibm.com
mailto:gopalk@microsoft.com
mailto:andrewl@microsoft.com
mailto:Noah_Mendelsohn@lotus.com
mailto:frystyk@microsoft.com
mailto:satisht@microsoft.com
mailto:dave@userland.com
http://www.develop.com/
http://www.ibm.com/
http://www.lotus.com/
http://www.lotus.com/
http://www.microsoft.com/
http://www.userland.com/

Simple Object Access Protocol (SOAP) 1.1

This document is a submission to the World Wide Web Consortium (see Submission
Request, W3C Staff Comment) to propose the formation of a working group in the area of
XML-based protocols. Comments are welcome to the authors but you are encouraged to
share your views on the W3C's public mailing list <xml-dist-app@w3.org> (see archives).

This document is a NOTE made available by the W3C for discussion only. Publication of
this Note by W3C indicates no endorsement by W3C or the W3C Team, or any W3C
Members. W3C has had no editorial control over the preparation of this Note. This
document is a work in progress and may be updated, replaced, or rendered obsolete by
other documents at any time.

A list of current W3C technical documents can be found at the Technical Reports page.

Table of Contents

1. Introduction
1.1 Design Goals
1.2 Notational Conventions
1.3 Examples of SOAP Messages
2. The SOAP Message Exchange Model
3. Relation to XML
4. SOAP Envelope
4.1.1 SOAP encodingStyle Attribute
4.1.2 Envelope Versioning Model
4.2 SOAP Header
4.2.1 Use of Header Attributes
4.2.2 SOAP actor Attribute
4.2.3 SOAP mustUnderstand Attribute
4.3 SOAP Body
4.3.1 Relationship between SOAP Header and Body
4.4 SOAP Fault
4.4.1 SOAP Fault Codes
5. SOAP Encoding
5.1 Rules for Encoding Types in XML
5.2 Simple Types
5.2.1 Strings
5.2.2 Enumerations
5.2.3 Array of Bytes
5.3 Polymorphic Accessor
5.4 Compound Types

http://www.w3.org/TR/SOAP/ (2 of 42) [12/17/2001 10:21:41 AM]

http://www.w3.org/
http://www.w3.org/Submission/2000/05/
http://www.w3.org/Submission/2000/05/
http://www.w3.org/Submission/2000/05/Comment
mailto:xml-dist-app@w3.org
http://lists.w3.org/Archives/Public/xml-dist-app/
http://www.w3.org/TR/

Simple Object Access Protocol (SOAP) 1.1

5.4.1 Compound Values and References to Values
5.4.2 Arrays
5.4.2.1 PartiallyTransmitted Arrays
5.4.2.2 SparseArrays
5.4.3 Generic Compound Types
5.5 Default Values
5.6 SOAP root Attribute
6. Using SOAP in HTTP
6.1 SOAP HTTP Request
6.1.1 The SOAPAction HTTP Header Field
6.2 SOAP HTTP Response
6.3 The HTTP Extension Framework
6.4 SOAP HTTP Examples
7. Using SOAP for RPC
7.1 RPC and SOAP Body
7.2 RPC and SOAP Header
8. Security Considerations
9. References
A. SOAP Envelope Examples
A.1 Sample Encoding of Call Requests
A.2 Sample Encoding of Response

1. Introduction

SOAP provides a simple and lightweight mechanism for exchanging structured and typed
information between peers in a decentralized, distributed environment using XML. SOAP
does not itself define any application semantics such as a programming model or
implementation specific semantics; rather it defines a simple mechanism for expressing
application semantics by providing a modular packaging model and encoding mechanisms
for encoding data within modules. This allows SOAP to be used in a large variety of systems
ranging from messaging systems to RPC.

SOAP consists of three parts:

● The SOAP envelope (see section 4) construct defines an overall framework for
expressing what is in a message; who should deal with it, and whether it is optional
or mandatory.

● The SOAP encoding rules (see section 5) defines a serialization mechanism that can
be used to exchange instances of application-defined datatypes.

● The SOAP RPC representation (see section 7) defines a convention that can be used

http://www.w3.org/TR/SOAP/ (3 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

to represent remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are functionally
orthogonal. In particular, the envelope and the encoding rules are defined in different
namespaces in order to promote simplicity through modularity.

In addition to the SOAP envelope, the SOAP encoding rules and the SOAP RPC
conventions, this specification defines two protocol bindings that describe how a SOAP
message can be carried in HTTP [5] messages either with or without the HTTP Extension
Framework [6].

1.1 Design Goals

A major design goal for SOAP is simplicity and extensibility. This means that there are
several features from traditional messaging systems and distributed object systems that are
not part of the core SOAP specification. Such features include

● Distributed garbage collection

● Boxcarring or batching of messages

● Objects-by-reference (which requires distributed garbage collection)

● Activation (which requires objects-by-reference)

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC-2119 [2].

The namespace prefixes "SOAP-ENV" and "SOAP-ENC" used in this document are
associated with the SOAP namespaces "http://schemas.xmlsoap.org/soap/envelope/" and
"http://schemas.xmlsoap.org/soap/encoding/" respectively.

Throughout this document, the namespace prefix "xsi" is assumed to be associated with the
URI "http://www.w3.org/1999/XMLSchema-instance" which is defined in the XML Schemas
specification [11]. Similarly, the namespace prefix "xsd" is assumed to be associated with
the URI "http://www.w3.org/1999/XMLSchema" which is defined in [10]. The namespace
prefix "tns" is used to indicate whatever is the target namespace of the current document.
All other namespace prefixes are samples only.

Namespace URIs of the general form "some-URI" represent some application-dependent or

http://www.w3.org/TR/SOAP/ (4 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/1999/XMLSchema-instance
http://www.w3.org/1999/XMLSchema

Simple Object Access Protocol (SOAP) 1.1

context-dependent URI [4].

This specification uses the augmented Backus-Naur Form (BNF) as described in RFC-2616
[5] for certain constructs.

1.3 Examples of SOAP Messages

In this example, a GetLastTradePrice SOAP request is sent to a StockQuote service. The
request takes a string parameter, ticker symbol, and returns a float in the SOAP response.
The SOAP Envelope element is the top element of the XML document representing the
SOAP message. XML namespaces are used to disambiguate SOAP identifiers from
application specific identifiers. The example illustrates the HTTP bindings defined in section
6. It is worth noting that the rules governing XML payload format in SOAP are entirely
independent of the fact that the payload is carried in HTTP.

More examples are available in Appendix A.

Example 1 SOAP Message Embedded in HTTP Request

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Following is the response message containing the HTTP message with the SOAP message
as the payload:

Example 2 SOAP Message Embedded in HTTP Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"

http://www.w3.org/TR/SOAP/ (5 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2. The SOAP Message Exchange Model

SOAP messages are fundamentally one-way transmissions from a sender to a receiver, but
as illustrated above, SOAP messages are often combined to implement patterns such as
request/response.

SOAP implementations can be optimized to exploit the unique characteristics of particular
network systems. For example, the HTTP binding described in section 6 provides for SOAP
response messages to be delivered as HTTP responses, using the same connection as the
inbound request.

Regardless of the protocol to which SOAP is bound, messages are routed along a so-called
"message path", which allows for processing at one or more intermediate nodes in addition
to the ultimate destination.

A SOAP application receiving a SOAP message MUST process that message by
performing the following actions in the order listed below:

1. Identify all parts of the SOAP message intended for that application (see section
4.2.2)

2. Verify that all mandatory parts identified in step 1 are supported by the application for
this message (see section 4.2.3) and process them accordingly. If this is not the case
then discard the message (see section 4.4). The processor MAY ignore optional parts
identified in step 1 without affecting the outcome of the processing.

3. If the SOAP application is not the ultimate destination of the message then remove all
parts identified in step 1 before forwarding the message.

Processing a message or a part of a message requires that the SOAP processor

http://www.w3.org/TR/SOAP/ (6 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

understands, among other things, the exchange pattern being used (one way,
request/response, multicast, etc.), the role of the recipient in that pattern, the employment (if
any) of RPC mechanisms such as the one documented in section 7, the representation or
encoding of data, as well as other semantics necessary for correct processing.

While attributes such as the SOAP encodingStyle attribute (see section 4.1.1) can be used
to describe certain aspects of a message, this specification does not mandate a particular
means by which the recipient makes such determinations in general. For example, certain
applications will understand that a particular <getStockPrice> element signals an RPC
request using the conventions of section 7, while another application may infer that all traffic
directed to it is encoded as one way messages.

3. Relation to XML

All SOAP messages are encoded using XML (see [7] for more information on XML).

A SOAP application SHOULD include the proper SOAP namespace on all elements and
attributes defined by SOAP in messages that it generates. A SOAP application MUST be
able to process SOAP namespaces in messages that it receives. It MUST discard
messages that have incorrect namespaces (see section 4.4) and it MAY process SOAP
messages without SOAP namespaces as though they had the correct SOAP namespaces.

SOAP defines two namespaces (see [8] for more information on XML namespaces):

● The SOAP envelope has the namespace identifier
"http://schemas.xmlsoap.org/soap/envelope/"

● The SOAP serialization has the namespace identifier
"http://schemas.xmlsoap.org/soap/encoding/"

A SOAP message MUST NOT contain a Document Type Declaration. A SOAP message
MUST NOT contain Processing Instructions. [7]

SOAP uses the local, unqualified "id" attribute of type "ID" to specify the unique identifier of
an encoded element. SOAP uses the local, unqualified attribute "href" of type "uri-reference"
to specify a reference to that value, in a manner conforming to the XML Specification [7],
XML Schema Specification [11], and XML Linking Language Specification [9].

With the exception of the SOAP mustUnderstand attribute (see section 4.2.3) and the SOAP
actor attribute (see section 4.2.2), it is generally permissible to have attributes and their
values appear in XML instances or alternatively in schemas, with equal effect. That is,
declaration in a DTD or schema with a default or fixed value is semantically equivalent to

http://www.w3.org/TR/SOAP/ (7 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

Simple Object Access Protocol (SOAP) 1.1

appearance in an instance.

4. SOAP Envelope

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an
optional SOAP header, and a mandatory SOAP body. This XML document is referred to as
a SOAP message for the rest of this specification. The namespace identifier for the
elements and attributes defined in this section is
"http://schemas.xmlsoap.org/soap/envelope/". A SOAP message contains the following:

● The Envelope is the top element of the XML document representing the message.

● The Header is a generic mechanism for adding features to a SOAP message in a
decentralized manner without prior agreement between the communicating parties.
SOAP defines a few attributes that can be used to indicate who should deal with a
feature and whether it is optional or mandatory (see section 4.2)

● The Body is a container for mandatory information intended for the ultimate recipient
of the message (see section 4.3). SOAP defines one element for the body, which is
the Fault element used for reporting errors.

The grammar rules are as follows:

1. Envelope

❍ The element name is "Envelope".

❍ The element MUST be present in a SOAP message

❍ The element MAY contain namespace declarations as well as additional
attributes. If present, such additional attributes MUST be namespace-qualified.
Similarly, the element MAY contain additional sub elements. If present these
elements MUST be namespace-qualified and MUST follow the SOAP Body
element.

2. Header (see section 4.2)

❍ The element name is "Header".

❍ The element MAY be present in a SOAP message. If present, the element
MUST be the first immediate child element of a SOAP Envelope element.

❍ The element MAY contain a set of header entries each being an immediate
child element of the SOAP Header element. All immediate child elements of
the SOAP Header element MUST be namespace-qualified.

http://www.w3.org/TR/SOAP/ (8 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/envelope/

Simple Object Access Protocol (SOAP) 1.1

3. Body (see section 4.3)

❍ The element name is "Body".

❍ The element MUST be present in a SOAP message and MUST be an
immediate child element of a SOAP Envelope element. It MUST directly follow
the SOAP Header element if present. Otherwise it MUST be the first immediate
child element of the SOAP Envelope element.

❍ The element MAY contain a set of body entries each being an immediate child
element of the SOAP Body element. Immediate child elements of the SOAP
Body element MAY be namespace-qualified. SOAP defines the SOAP Fault
element, which is used to indicate error messages (see section 4.4).

4.1.1 SOAP encodingStyle Attribute

The SOAP encodingStyle global attribute can be used to indicate the serialization rules
used in a SOAP message. This attribute MAY appear on any element, and is scoped to that
element's contents and all child elements not themselves containing such an attribute, much
as an XML namespace declaration is scoped. There is no default encoding defined for a
SOAP message.

The attribute value is an ordered list of one or more URIs identifying the serialization rule or
rules that can be used to deserialize the SOAP message indicated in the order of most
specific to least specific. Examples of values are

"http://schemas.xmlsoap.org/soap/encoding/"
"http://my.host/encoding/restricted http://my.host/encoding/"
""

The serialization rules defined by SOAP in section 5 are identified by the URI
"http://schemas.xmlsoap.org/soap/encoding/". Messages using this particular serialization
SHOULD indicate this using the SOAP encodingStyle attribute. In addition, all URIs
syntactically beginning with "http://schemas.xmlsoap.org/soap/encoding/" indicate
conformance with the SOAP encoding rules defined in section 5 (though with potentially
tighter rules added).

A value of the zero-length URI ("") explicitly indicates that no claims are made for the
encoding style of contained elements. This can be used to turn off any claims from
containing elements.

4.1.2 Envelope Versioning Model

SOAP does not define a traditional versioning model based on major and minor version

http://www.w3.org/TR/SOAP/ (9 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/

Simple Object Access Protocol (SOAP) 1.1

numbers. A SOAP message MUST have an Envelope element associated with the
"http://schemas.xmlsoap.org/soap/envelope/" namespace. If a message is received by a
SOAP application in which the SOAP Envelope element is associated with a different
namespace, the application MUST treat this as a version error and discard the message. If
the message is received through a request/response protocol such as HTTP, the application
MUST respond with a SOAP VersionMismatch faultcode message (see section 4.4) using
the SOAP "http://schemas.xmlsoap.org/soap/envelope/" namespace.

4.2 SOAP Header

SOAP provides a flexible mechanism for extending a message in a decentralized and
modular way without prior knowledge between the communicating parties. Typical examples
of extensions that can be implemented as header entries are authentication, transaction
management, payment etc.

The Header element is encoded as the first immediate child element of the SOAP Envelope
XML element. All immediate child elements of the Header element are called header
entries.

The encoding rules for header entries are as follows:

1. A header entry is identified by its fully qualified element name, which consists of the
namespace URI and the local name. All immediate child elements of the SOAP
Header element MUST be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style used
for the header entries (see section 4.1.1).

3. The SOAP mustUnderstand attribute (see section 4.2.3) and SOAP actor attribute
(see section 4.2.2) MAY be used to indicate how to process the entry and by whom
(see section 4.2.1).

4.2.1 Use of Header Attributes

The SOAP Header attributes defined in this section determine how a recipient of a SOAP
message should process the message as described in section 2. A SOAP application
generating a SOAP message SHOULD only use the SOAP Header attributes on immediate
child elements of the SOAP Header element. The recipient of a SOAP message MUST
ignore all SOAP Header attributes that are not applied to an immediate child element of the
SOAP Header element.

An example is a header with an element identifier of "Transaction", a "mustUnderstand"
value of "1", and a value of 5. This would be encoded as follows:

http://www.w3.org/TR/SOAP/ (10 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/

Simple Object Access Protocol (SOAP) 1.1

<SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="some-URI" SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
</SOAP-ENV:Header>

4.2.2 SOAP actor Attribute

A SOAP message travels from the originator to the ultimate destination, potentially by
passing through a set of SOAP intermediaries along the message path. A SOAP
intermediary is an application that is capable of both receiving and forwarding SOAP
messages. Both intermediaries as well as the ultimate destination are identified by a URI.

Not all parts of a SOAP message may be intended for the ultimate destination of the SOAP
message but, instead, may be intended for one or more of the intermediaries on the
message path. The role of a recipient of a header element is similar to that of accepting a
contract in that it cannot be extended beyond the recipient. That is, a recipient receiving a
header element MUST NOT forward that header element to the next application in the
SOAP message path. The recipient MAY insert a similar header element but in that case,
the contract is between that application and the recipient of that header element.

The SOAP actor global attribute can be used to indicate the recipient of a header element.
The value of the SOAP actor attribute is a URI. The special URI
"http://schemas.xmlsoap.org/soap/actor/next" indicates that the header element is intended
for the very first SOAP application that processes the message. This is similar to the hop-by-
hop scope model represented by the Connection header field in HTTP.

Omitting the SOAP actor attribute indicates that the recipient is the ultimate destination of
the SOAP message.

This attribute MUST appear in the SOAP message instance in order to be effective (see
section 3 and 4.2.1).

4.2.3 SOAP mustUnderstand Attribute

The SOAP mustUnderstand global attribute can be used to indicate whether a header entry
is mandatory or optional for the recipient to process. The recipient of a header entry is
defined by the SOAP actor attribute (see section 4.2.2). The value of the mustUnderstand
attribute is either "1" or "0". The absence of the SOAP mustUnderstand attribute is
semantically equivalent to its presence with the value "0".

If a header element is tagged with a SOAP mustUnderstand attribute with a value of "1", the

http://www.w3.org/TR/SOAP/ (11 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/actor/next

Simple Object Access Protocol (SOAP) 1.1

recipient of that header entry either MUST obey the semantics (as conveyed by the fully
qualified name of the element) and process correctly to those semantics, or MUST fail
processing the message (see section 4.4).

The SOAP mustUnderstand attribute allows for robust evolution. Elements tagged with the
SOAP mustUnderstand attribute with a value of "1" MUST be presumed to somehow modify
the semantics of their parent or peer elements. Tagging elements in this manner assures
that this change in semantics will not be silently (and, presumably, erroneously) ignored by
those who may not fully understand it.

This attribute MUST appear in the instance in order to be effective (see section 3 and 4.2.1).

4.3 SOAP Body

The SOAP Body element provides a simple mechanism for exchanging mandatory
information intended for the ultimate recipient of the message. Typical uses of the Body
element include marshalling RPC calls and error reporting.

The Body element is encoded as an immediate child element of the SOAP Envelope XML
element. If a Header element is present then the Body element MUST immediately follow
the Header element, otherwise it MUST be the first immediate child element of the Envelope
element.

All immediate child elements of the Body element are called body entries and each body
entry is encoded as an independent element within the SOAP Body element.

The encoding rules for body entries are as follows:

1. A body entry is identified by its fully qualified element name, which consists of the
namespace URI and the local name. Immediate child elements of the SOAP Body
element MAY be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style used
for the body entries (see section 4.1.1).

SOAP defines one body entry, which is the Fault entry used for reporting errors (see section
4.4).

4.3.1 Relationship between SOAP Header and Body

While the Header and Body are defined as independent elements, they are in fact related.
The relationship between a body entry and a header entry is as follows: A body entry is
semantically equivalent to a header entry intended for the default actor and with a SOAP

http://www.w3.org/TR/SOAP/ (12 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

mustUnderstand attribute with a value of "1". The default actor is indicated by not using the
actor attribute (see section 4.2.2).

4.4 SOAP Fault

The SOAP Fault element is used to carry error and/or status information within a SOAP
message. If present, the SOAP Fault element MUST appear as a body entry and MUST
NOT appear more than once within a Body element.

The SOAP Fault element defines the following four subelements:

faultcode
The faultcode element is intended for use by software to provide an algorithmic
mechanism for identifying the fault. The faultcode MUST be present in a SOAP Fault
element and the faultcode value MUST be a qualified name as defined in [8], section
3. SOAP defines a small set of SOAP fault codes covering basic SOAP faults (see
section 4.4.1)

faultstring
The faultstring element is intended to provide a human readable explanation of the
fault and is not intended for algorithmic processing. The faultstring element is similar
to the 'Reason-Phrase' defined by HTTP (see [5], section 6.1). It MUST be present in
a SOAP Fault element and SHOULD provide at least some information explaining the
nature of the fault.

faultactor
The faultactor element is intended to provide information about who caused the fault
to happen within the message path (see section 2). It is similar to the SOAP actor
attribute (see section 4.2.2) but instead of indicating the destination of the header
entry, it indicates the source of the fault. The value of the faultactor attribute is a URI
identifying the source. Applications that do not act as the ultimate destination of the
SOAP message MUST include the faultactor element in a SOAP Fault element. The
ultimate destination of a message MAY use the faultactor element to indicate
explicitly that it generated the fault (see also the detail element below).

detail
The detail element is intended for carrying application specific error information
related to the Body element. It MUST be present if the contents of the Body element
could not be successfully processed. It MUST NOT be used to carry information
about error information belonging to header entries. Detailed error information
belonging to header entries MUST be carried within header entries.

The absence of the detail element in the Fault element indicates that the fault is not
related to processing of the Body element. This can be used to distinguish whether
the Body element was processed or not in case of a fault situation.

http://www.w3.org/TR/SOAP/ (13 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

All immediate child elements of the detail element are called detail entries and each
detail entry is encoded as an independent element within the detail element.

The encoding rules for detail entries are as follows (see also example 10):

1. A detail entry is identified by its fully qualified element name, which consists of
the namespace URI and the local name. Immediate child elements of the detail
element MAY be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style
used for the detail entries (see section 4.1.1).

Other Fault subelements MAY be present, provided they are namespace-qualified.

4.4.1 SOAP Fault Codes

The faultcode values defined in this section MUST be used in the faultcode element when
describing faults defined by this specification. The namespace identifier for these faultcode
values is "http://schemas.xmlsoap.org/soap/envelope/". Use of this space is recommended
(but not required) in the specification of methods defined outside of the present
specification.

The default SOAP faultcode values are defined in an extensible manner that allows for new
SOAP faultcode values to be defined while maintaining backwards compatibility with
existing faultcode values. The mechanism used is very similar to the 1xx, 2xx, 3xx etc basic
status classes classes defined in HTTP (see [5] section 10). However, instead of integers,
they are defined as XML qualified names (see [8] section 3). The character "." (dot) is used
as a separator of faultcode values indicating that what is to the left of the dot is a more
generic fault code value than the value to the right. Example

Client.Authentication

The set of faultcode values defined in this document is:

Name Meaning

VersionMismatch The processing party found an invalid namespace for the SOAP
Envelope element (see section 4.1.2)

MustUnderstand

An immediate child element of the SOAP Header element that was
either not understood or not obeyed by the processing party contained
a SOAP mustUnderstand attribute with a value of "1" (see section
4.2.3)

http://www.w3.org/TR/SOAP/ (14 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/envelope/

Simple Object Access Protocol (SOAP) 1.1

Client

The Client class of errors indicate that the message was incorrectly
formed or did not contain the appropriate information in order to
succeed. For example, the message could lack the proper
authentication or payment information. It is generally an indication that
the message should not be resent without change. See also section 4.4
for a description of the SOAP Fault detail sub-element.

Server

The Server class of errors indicate that the message could not be
processed for reasons not directly attributable to the contents of the
message itself but rather to the processing of the message. For
example, processing could include communicating with an upstream
processor, which didn't respond. The message may succeed at a later
point in time. See also section 4.4 for a description of the SOAP Fault
detail sub-element.

5. SOAP Encoding

The SOAP encoding style is based on a simple type system that is a generalization of the
common features found in type systems in programming languages, databases and semi-
structured data. A type either is a simple (scalar) type or is a compound type constructed as
a composite of several parts, each with a type. This is described in more detail below. This
section defines rules for serialization of a graph of typed objects. It operates on two levels.
First, given a schema in any notation consistent with the type system described, a schema
for an XML grammar may be constructed. Second, given a type-system schema and a
particular graph of values conforming to that schema, an XML instance may be constructed.
In reverse, given an XML instance produced in accordance with these rules, and given also
the original schema, a copy of the original value graph may be constructed.

The namespace identifier for the elements and attributes defined in this section is
"http://schemas.xmlsoap.org/soap/encoding/". The encoding samples shown assume all
namespace declarations are at a higher element level.

Use of the data model and encoding style described in this section is encouraged but not
required; other data models and encodings can be used in conjunction with SOAP (see
section 4.1.1).

5.1 Rules for Encoding Types in XML

XML allows very flexible encoding of data. SOAP defines a narrower set of rules for
encoding. This section defines the encoding rules at a high level, and the next section
describes the encoding rules for specific types when they require more detail. The
encodings described in this section can be used in conjunction with the mapping of RPC

http://www.w3.org/TR/SOAP/ (15 of 42) [12/17/2001 10:21:41 AM]

http://schemas.xmlsoap.org/soap/encoding/

Simple Object Access Protocol (SOAP) 1.1

calls and responses specified in Section 7.

To describe encoding, the following terminology is used:

1. A "value" is a string, the name of a measurement (number, date, enumeration, etc.)
or a composite of several such primitive values. All values are of specific types.

2. A "simple value" is one without named parts. Examples of simple values are
particular strings, integers, enumerated values etc.

3. A "compound value" is an aggregate of relations to other values. Examples of
Compound Values are particular purchase orders, stock reports, street addresses,
etc.

4. Within a compound value, each related value is potentially distinguished by a role
name, ordinal or both. This is called its "accessor." Examples of compound values
include particular Purchase Orders, Stock Reports etc. Arrays are also compound
values. It is possible to have compound values with several accessors each named
the same, as for example, RDF does.

5. An "array" is a compound value in which ordinal position serves as the only distinction
among member values.

6. A "struct" is a compound value in which accessor name is the only distinction among
member values, and no accessor has the same name as any other.

7. A "simple type" is a class of simple values. Examples of simple types are the classes
called "string," "integer," enumeration classes, etc.

8. A "compound type" is a class of compound values. An example of a compound type
is the class of purchase order values sharing the same accessors (shipTo, totalCost,
etc.) though with potentially different values (and perhaps further constrained by limits
on certain values).

9. Within a compound type, if an accessor has a name that is distinct within that type but
is not distinct with respect to other types, that is, the name plus the type together are
needed to make a unique identification, the name is called "locally scoped." If
however the name is based in part on a Uniform Resource Identifier, directly or
indirectly, such that the name alone is sufficient to uniquely identify the accessor
irrespective of the type within which it appears, the name is called "universally
scoped."

10. Given the information in the schema relative to which a graph of values is serialized,
it is possible to determine that some values can only be related by a single instance
of an accessor. For others, it is not possible to make this determination. If only one
accessor can reference it, a value is considered "single-reference". If referenced by
more than one, actually or potentially, it is "multi-reference." Note that it is possible for
a certain value to be considered "single-reference" relative to one schema and "multi-

http://www.w3.org/TR/SOAP/ (16 of 42) [12/17/2001 10:21:41 AM]

Simple Object Access Protocol (SOAP) 1.1

reference" relative to another.

11. Syntactically, an element may be "independent" or "embedded." An independent
element is any element appearing at the top level of a serialization. All others are
embedded elements.

Although it is possible to use the xsi:type attribute such that a graph of values is self-
describing both in its structure and the types of its values, the serialization rules permit that
the types of values MAY be determinate only by reference to a schema. Such schemas
MAY be in the notation described by "XML Schema Part 1: Structures" [10] and "XML
Schema Part 2: Datatypes" [11] or MAY be in any other notation. Note also that, while the
serialization rules apply to compound types other than arrays and structs, many schemas
will contain only struct and array types.

The rules for serialization are as follows:

1. All values are represented as element content. A multi-reference value MUST be
represented as the content of an independent element. A single-reference value
SHOULD not be (but MAY be).

2. For each element containing a value, the type of the value MUST be represented by
at least one of the following conditions: (a) the containing element instance contains
an xsi:type attribute, (b) the containing element instance is itself contained within an
element containing a (possibly defaulted) SOAP-ENC:arrayType attribute or (c) or the
name of the element bears a definite relation to the type, that type then determinable
from a schema.

3. A simple value is represented as character data, that is, without any subelements.
Every simple value must have a type that is either listed in the XML Schemas
Specification, part 2 [11] or whose source type is listed therein (see also section 5.2).

4. A Compound Value is encoded as a sequence of elements, each accessor
represented by an embedded element whose name corresponds to the name of the
accessor. Accessors whose names are local to their containing types have
unqualified element names; all others have qualified names (see also section 5.4).

5. A multi-reference simple or compound value is encoded as an independent element
containing a local, unqualified attribute named "id" and of type "ID" per the XML
Specification [7]. Each accessor to this value is an empty element having a local,
unqualified attribute named "href" and of type "uri-reference" per the XML Schema
Specification [11], with a "href" attribute value of a URI fragment identifier referencing
the corresponding independent element.

6. Strings and byte arrays are represented as multi-reference simple types, but special
rules allow them to be represented efficiently for common cases (see also section
5.2.1 and 5.2.3). An accessor to a string or byte-array value MAY have an attribute

http://www.w3.org/TR/SOAP/ (17 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

named "id" and of type "ID" per the XML Specification [7]. If so, all other accessors to
the same value are encoded as empty elements having a local, unqualified attribute
named "href" and of type "uri-reference" per the XML Schema Specification [11], with
a "href" attribute value of a URI fragment identifier referencing the single element
containing the value.

7. It is permissible to encode several references to a value as though these were
references to several distinct values, but only when from context it is known that the
meaning of the XML instance is unaltered.

8. Arrays are compound values (see also section 5.4.2). SOAP arrays are defined as
having a type of "SOAP-ENC:Array" or a type derived there from.

SOAP arrays have one or more dimensions (rank) whose members are distinguished
by ordinal position. An array value is represented as a series of elements reflecting
the array, with members appearing in ascending ordinal sequence. For multi-
dimensional arrays the dimension on the right side varies most rapidly. Each member
element is named as an independent element (see rule 2).

SOAP arrays can be single-reference or multi-reference values, and consequently
may be represented as the content of either an embedded or independent element.

SOAP arrays MUST contain a "SOAP-ENC:arrayType" attribute whose value
specifies the type of the contained elements as well as the dimension(s) of the array.
The value of the "SOAP-ENC:arrayType" attribute is defined as follows:

arrayTypeValue = atype asize
atype = QName *(rank)
rank = "[" *(",") "]"
asize = "[" #length "]"
length = 1*DIGIT

The "atype"construct is the type name of the contained elements expressed as a
QName as would appear in the "type"attribute of an XML Schema element
declaration and acts as a type constraint (meaning that all values of contained
elements are asserted to conform to the indicated type; that is, the type cited in
SOAP-ENC:arrayType must be the type or a supertype of every array member). In
the case of arrays of arrays or "jagged arrays", the type component is encoded as the
"innermost"type name followed by a rank construct for each level of nested arrays
starting from 1. Multi-dimensional arrays are encoded using a comma for each
dimension starting from 1.

The "asize"construct contains a comma separated list of zero, one, or more integers
indicating the lengths of each dimension of the array. A value of zero integers
indicates that no particular quantity is asserted but that the size may be determined
by inspection of the actual members.

http://www.w3.org/TR/SOAP/ (18 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

For example, an array with 5 members of type array of integers would have an
arrayTypeValue value of "int[][5]"of which the atype value is "int[]"and the asize value
is "[5]". Likewise, an array with 3 members of type two-dimensional arrays of integers
would have an arrayTypeValue value of "int[,][3]"of which the atype value is "int[,]"and
the asize value is "[3]".

A SOAP array member MAY contain a "SOAP-ENC:offset"attribute indicating the
offset position of that item in the enclosing array. This can be used to indicate the
offset position of a partially represented array (see section 5.4.2.1). Likewise, an
array member MAY contain a "SOAP-ENC:position"attribute indicating the position of
that item in the enclosing array. This can be used to describe members of sparse
arrays (see section 5.4.2.2). The value of the "SOAP-ENC:offset"and the "SOAP-
ENC:position"attribute is defined as follows:

arrayPoint = "[" #length "]"

with offsets and positions based at 0.

9. A NULL value or a default value MAY be represented by omission of the accessor
element. A NULL value MAY also be indicated by an accessor element containing the
attribute xsi:null with value '1' or possibly other application-dependent attributes and
values.

Note that rule 2 allows independent elements and also elements representing the members
of arrays to have names which are not identical to the type of the contained value.

5.2 Simple Types

For simple types, SOAP adopts all the types found in the section "Built-in datatypes" of the
"XML Schema Part 2: Datatypes" Specification [11], both the value and lexical spaces.
Examples include:

Type Example

int 58502

float 314159265358979E+1

negativeInteger -32768

string Louis "Satchmo" Armstrong

The datatypes declared in the XML Schema specification may be used directly in element

http://www.w3.org/TR/SOAP/ (19 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

schemas. Types derived from these may also be used. An example of a schema fragment
and corresponding instance data with elements of these types is:

<element name="age" type="int"/>
<element name="height" type="float"/>
<element name="displacement" type="negativeInteger"/>
<element name="color">
 <simpleType base="xsd:string">
 <enumeration value="Green"/>
 <enumeration value="Blue"/>
 </simpleType>
</element>

<age>45</age>
<height>5.9</height>
<displacement>-450</displacement>
<color>Blue</color>

All simple values MUST be encoded as the content of elements whose type is either defined
in "XML Schema Part 2: Datatypes" Specification [11], or is based on a type found there by
using the mechanisms provided in the XML Schema specification.

If a simple value is encoded as an independent element or member of a heterogenous array
it is convenient to have an element declaration corresponding to the datatype. Because the
"XML Schema Part 2: Datatypes" Specification [11] includes type definitions but does not
include corresponding element declarations, the SOAP-ENC schema and namespace
declares an element for every simple datatype. These MAY be used.

<SOAP-ENC:int id="int1">45</SOAP-ENC:int>

5.2.1 Strings

The datatype "string" is defined in "XML Schema Part 2: Datatypes" Specification [11]. Note
that this is not identical to the type called "string" in many database or programming
languages, and in particular may forbid some characters those languages would permit.
(Those values must be represented by using some datatype other than xsd:string.)

A string MAY be encoded as a single-reference or a multi-reference value.

The containing element of the string value MAY have an "id" attribute. Additional accessor
elements MAY then have matching "href" attributes.

For example, two accessors to the same string could appear, as follows:

http://www.w3.org/TR/SOAP/ (20 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

<greeting id="String-0">Hello</greeting>
<salutation href="#String-0"/>

However, if the fact that both accessors reference the same instance of the string (or
subtype of string) is immaterial, they may be encoded as two single-reference values as
follows:

<greeting>Hello</greeting>
<salutation>Hello</salutation>

Schema fragments for these examples could appear similar to the following:

<element name="greeting" type="SOAP-ENC:string"/>
<element name="salutation" type="SOAP-ENC:string"/>

(In this example, the type SOAP-ENC:string is used as the element's type as a convenient
way to declare an element whose datatype is "xsd:string" and which also allows an "id" and
"href" attribute. See the SOAP Encoding schema for the exact definition. Schemas MAY use
these declarations from the SOAP Encoding schema but are not required to.)

5.2.2 Enumerations

The "XML Schema Part 2: Datatypes" Specification [11] defines a mechanism called
"enumeration." The SOAP data model adopts this mechanism directly. However, because
programming and other languages often define enumeration somewhat differently, we spell-
out the concept in more detail here and describe how a value that is a member of an
enumerated list of possible values is to be encoded. Specifically, it is encoded as the name
of the value.

"Enumeration" as a concept indicates a set of distinct names. A specific enumeration is a
specific list of distinct values appropriate to the base type. For example the set of color
names ("Green", "Blue", "Brown") could be defined as an enumeration based on the string
built-in type. The values ("1", "3", "5") are a possible enumeration based on integer, and so
on. "XML Schema Part 2: Datatypes" [11] supports enumerations for all of the simple types
except for boolean. The language of "XML Schema Part 1: Structures" Specification [10]
can be used to define enumeration types. If a schema is generated from another notation in
which no specific base type is applicable, use "string". In the following schema example
"EyeColor" is defined as a string with the possible values of "Green", "Blue", or "Brown"
enumerated, and instance data is shown accordingly.

<element name="EyeColor" type="tns:EyeColor"/>
<simpleType name="EyeColor" base="xsd:string">
 <enumeration value="Green"/>
 <enumeration value="Blue"/>

http://www.w3.org/TR/SOAP/ (21 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 <enumeration value="Brown"/>
</simpleType>

<Person>
 <Name>Henry Ford</Name>
 <Age>32</Age>
 <EyeColor>Brown</EyeColor>
</Person>

5.2.3 Array of Bytes

An array of bytes MAY be encoded as a single-reference or a multi-reference value. The
rules for an array of bytes are similar to those for a string.

In particular, the containing element of the array of bytes value MAY have an "id" attribute.
Additional accessor elements MAY then have matching "href" attributes.

The recommended representation of an opaque array of bytes is the 'base64' encoding
defined in XML Schemas [10][11], which uses the base64 encoding algorithm defined in
2045 [13]. However, the line length restrictions that normally apply to base64 data in MIME
do not apply in SOAP. A "SOAP-ENC:base64" subtype is supplied for use with SOAP.

<picture xsi:type="SOAP-ENC:base64">
 aG93IG5vDyBicm73biBjb3cNCg==
</picture>

5.3 Polymorphic Accessor

Many languages allow accessors that can polymorphically access values of several types,
each type being available at run time. A polymorphic accessor instance MUST contain an
"xsi:type" attribute that describes the type of the actual value.

For example, a polymorphic accessor named "cost" with a value of type "xsd:float" would be
encoded as follows:

<cost xsi:type="xsd:float">29.95</cost>

as contrasted with a cost accessor whose value's type is invariant, as follows:

<cost>29.95</cost>

5.4 Compound types

http://www.w3.org/TR/SOAP/ (22 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

SOAP defines types corresponding to the following structural patterns often found in
programming languages:

Struct
A "struct" is a compound value in which accessor name is the only distinction among
member values, and no accessor has the same name as any other.

Array
An "array" is a compound value in which ordinal position serves as the only distinction
among member values.

SOAP also permits serialization of data that is neither a Struct nor an Array, for example
data such as is found in a Directed-Labeled-Graph Data Model in which a single node has
many distinct accessors, some of which occur more than once. SOAP serialization does not
require that the underlying data model make an ordering distinction among accessors, but if
such an order exists, the accessors MUST be encoded in that sequence.

5.4.1 Compound Values, Structs and References to Values

The members of a Compound Value are encoded as accessor elements. When accessors
are distinguished by their name (as for example in a struct), the accessor name is used as
the element name. Accessors whose names are local to their containing types have
unqualified element names; all others have qualified names.

The following is an example of a struct of type "Book":

<e:Book>
 <author>Henry Ford</author>
 <preface>Prefatory text</preface>
 <intro>This is a book.</intro>
</e:Book>

And this is a schema fragment describing the above structure:

<element name="Book">
<complexType>
 <element name="author" type="xsd:string"/>
 <element name="preface" type="xsd:string"/>
 <element name="intro" type="xsd:string"/>
</complexType>
</e:Book>

Below is an example of a type with both simple and complex members. It shows two levels
of referencing. Note that the "href" attribute of the "Author" accessor element is a reference

http://www.w3.org/TR/SOAP/ (23 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

to the value whose "id" attribute matches. A similar construction appears for the "Address".

<e:Book>
 <title>My Life and Work</title>
 <author href="#Person-1"/>
</e:Book>
<e:Person id="Person-1">
 <name>Henry Ford</name>
 <address href="#Address-2"/>
</e:Person>
<e:Address id="Address-2">
 <email>mailto:henryford@hotmail.com</email>
 <web>http://www.henryford.com</web>
</e:Address>

The form above is appropriate when the "Person" value and the "Address" value are multi-
reference. If these were instead both single-reference, they SHOULD be embedded, as
follows:

<e:Book>
 <title>My Life and Work</title>
 <author>
 <name>Henry Ford</name>
 <address>
 <email>mailto:henryford@hotmail.com</email>
 <web>http://www.henryford.com</web>
 </address>
 </author>
</e:Book>

If instead there existed a restriction that no two persons can have the same address in a
given instance and that an address can be either a Street-address or an Electronic-address,
a Book with two authors would be encoded as follows:

<e:Book>
 <title>My Life and Work</title>
 <firstauthor href="#Person-1"/>
 <secondauthor href="#Person-2"/>
</e:Book>
<e:Person id="Person-1">
 <name>Henry Ford</name>
 <address xsi:type="m:Electronic-address">
 <email>mailto:henryford@hotmail.com</email>
 <web>http://www.henryford.com</web>
 </address>

http://www.w3.org/TR/SOAP/ (24 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

</e:Person>
<e:Person id="Person-2">
 <name>Samuel Crowther</name>
 <address xsi:type="n:Street-address">
 <street>Martin Luther King Rd</street>
 <city>Raleigh</city>
 <state>North Carolina</state>
 </address>
</e:Person>

Serializations can contain references to values not in the same resource:

<e:Book>
 <title>Paradise Lost</title>
 <firstauthor href="http://www.dartmouth.edu/~milton/"/>
</e:Book>

And this is a schema fragment describing the above structures:

<element name="Book" type="tns:Book"/>
<complexType name="Book">
 <!-- Either the following group must occur or else the
 href attribute must appear, but not both. -->
 <sequence minOccurs="0" maxOccurs="1">
 <element name="title" type="xsd:string"/>
 <element name="firstauthor" type="tns:Person"/>
 <element name="secondauthor" type="tns:Person"/>
 </sequence>
 <attribute name="href" type="uriReference"/>
 <attribute name="id" type="ID"/>
 <anyAttribute namespace="##other"/>
</complexType>

<element name="Person" base="tns:Person"/>
<complexType name="Person">
 <!-- Either the following group must occur or else the
 href attribute must appear, but not both. -->
 <sequence minOccurs="0" maxOccurs="1">
 <element name="name" type="xsd:string"/>
 <element name="address" type="tns:Address"/>
 </sequence>
 <attribute name="href" type="uriReference"/>
 <attribute name="id" type="ID"/>
 <anyAttribute namespace="##other"/>
</complexType>

http://www.w3.org/TR/SOAP/ (25 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

<element name="Address" base="tns:Address"/>
<complexType name="Address">
 <!-- Either the following group must occur or else the
 href attribute must appear, but not both. -->
 <sequence minOccurs="0" maxOccurs="1">
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 </sequence>
 <attribute name="href" type="uriReference"/>
 <attribute name="id" type="ID"/>
 <anyAttribute namespace="##other"/>
</complexType>

5.4.2 Arrays

SOAP arrays are defined as having a type of "SOAP-ENC:Array" or a type derived there
from (see also rule 8). Arrays are represented as element values, with no specific constraint
on the name of the containing element (just as values generally do not constrain the name
of their containing element).

Arrays can contain elements which themselves can be of any type, including nested arrays.
New types formed by restrictions of SOAP-ENC:Array can also be created to represent, for
example, arrays limited to integers or arrays of some user-defined enumeration.

The representation of the value of an array is an ordered sequence of elements constituting
the items of the array. Within an array value, element names are not significant for
distinguishing accessors. Elements may have any name. In practice, elements will
frequently be named so that their declaration in a schema suggests or determines their type.
As with compound types generally, if the value of an item in the array is a single-reference
value, the item contains its value. Otherwise, the item references its value via an "href"
attribute.

The following example is a schema fragment and an array containing integer array
members.

<element name="myFavoriteNumbers"
 type="SOAP-ENC:Array"/>

<myFavoriteNumbers
 SOAP-ENC:arrayType="xsd:int[2]">
 <number>3</number>
 <number>4</number>
</myFavoriteNumbers>

http://www.w3.org/TR/SOAP/ (26 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

In that example, the array "myFavoriteNumbers" contains several members each of which is
a value of type SOAP-ENC:int. This can be determined by inspection of the SOAP-
ENC:arrayType attribute. Note that the SOAP-ENC:Array type allows unqualified element
names without restriction. These convey no type information, so when used they must either
have an xsi:type attribute or the containing element must have a SOAP-ENC:arrayType
attribute. Naturally, types derived from SOAP-ENC:Array may declare local elements, with
type information.

As previously noted, the SOAP-ENC schema contains declarations of elements with names
corresponding to each simple type in the "XML Schema Part 2: Datatypes" Specification
[11]. It also contains a declaration for "Array". Using these, we might write

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:int[2]">
 <SOAP-ENC:int>3</SOAP-ENC:int>
 <SOAP-ENC:int>4</SOAP-ENC:int>
</SOAP-ENC:Array>

Arrays can contain instances of any subtype of the specified arrayType. That is, the
members may be of any type that is substitutable for the type specified in the arrayType
attribute, according to whatever substitutability rules are expressed in the schema. So, for
example, an array of integers can contain any type derived from integer (for example "int" or
any user-defined derivation of integer). Similarly, an array of "address" might contain a
restricted or extended type such as "internationalAddress". Because the supplied SOAP-
ENC:Array type admits members of any type, arbitrary mixtures of types can be contained
unless specifically limited by use of the arrayType attribute.

Types of member elements can be specified using the xsi:type attribute in the instance, or
by declarations in the schema of the member elements, as the following two arrays
demonstrate respectively.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:ur-type[4]">
 <thing xsi:type="xsd:int">12345</thing>
 <thing xsi:type="xsd:decimal">6.789</thing>
 <thing xsi:type="xsd:string">
 Of Mans First Disobedience, and the Fruit
 Of that Forbidden Tree, whose mortal tast
 Brought Death into the World, and all our woe,
 </thing>
 <thing xsi:type="xsd:uriReference">
 http://www.dartmouth.edu/~milton/reading_room/
 </thing>
</SOAP-ENC:Array>

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:ur-type[4]">

http://www.w3.org/TR/SOAP/ (27 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 <SOAP-ENC:int>12345</SOAP-ENC:int>
 <SOAP-ENC:decimal>6.789</SOAP-ENC:decimal>
 <xsd:string>
 Of Mans First Disobedience, and the Fruit
 Of that Forbidden Tree, whose mortal tast
 Brought Death into the World, and all our woe,
 </xsd:string>
 <SOAP-ENC:uriReference>
 http://www.dartmouth.edu/~milton/reading_room/
 </SOAP-ENC:uriReference >
</SOAP-ENC:Array>

Array values may be structs or other compound values. For example an array of "xyz:Order"
structs :

<SOAP-ENC:Array SOAP-ENC:arrayType="xyz:Order[2]">
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
</SOAP-ENC:Array>

Arrays may have other arrays as member values. The following is an example of an array of
two arrays, each of which is an array of strings.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[][2]">
 <item href="#array-1"/>
 <item href="#array-2"/>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="array-1" SOAP-
ENC:arrayType="xsd:string[2]">
 <item>r1c1</item>
 <item>r1c2</item>
 <item>r1c3</item>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="array-2" SOAP-
ENC:arrayType="xsd:string[2]">
 <item>r2c1</item>
 <item>r2c2</item>
</SOAP-ENC:Array>

http://www.w3.org/TR/SOAP/ (28 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

The element containing an array value does not need to be named "SOAP-ENC:Array". It
may have any name, provided that the type of the element is either SOAP-ENC:Array or is
derived from SOAP-ENC:Array by restriction. For example, the following is a fragment of a
schema and a conforming instance array.

<simpleType name="phoneNumber" base="string"/>

<element name="ArrayOfPhoneNumbers">
 <complexType base="SOAP-ENC:Array">
 <element name="phoneNumber" type="tns:phoneNumber"
maxOccurs="unbounded"/>
 </complexType>
 <anyAttribute/>
</element>

<xyz:ArrayOfPhoneNumbers SOAP-
ENC:arrayType="xyz:phoneNumber[2]">
 <phoneNumber>206-555-1212</phoneNumber>
 <phoneNumber>1-888-123-4567</phoneNumber>
</xyz:ArrayOfPhoneNumbers>

Arrays may be multi-dimensional. In this case, more than one size will appear within the
asize part of the arrayType attribute:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[2,3]">
 <item>r1c1</item>
 <item>r1c2</item>
 <item>r1c3</item>
 <item>r2c1</item>
 <item>r2c2</item>
 <item>r2c3</item>
</SOAP-ENC:Array>

While the examples above have shown arrays encoded as independent elements, array
values MAY also appear embedded and SHOULD do so when they are known to be single
reference.

The following is an example of a schema fragment and an array of phone numbers
embedded in a struct of type "Person" and accessed through the accessor "phone-
numbers":

<simpleType name="phoneNumber" base="string"/>

<element name="ArrayOfPhoneNumbers">
 <complexType base="SOAP-ENC:Array">

http://www.w3.org/TR/SOAP/ (29 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 <element name="phoneNumber" type="tns:phoneNumber"
maxOccurs="unbounded"/>
 </complexType>
 <anyAttribute/>
</element>

<element name="Person">
 <complexType>
 <element name="name" type="string"/>
 <element name="phoneNumbers"
type="tns:ArrayOfPhoneNumbers"/>
 </complexType>
</element>

<xyz:Person>
 <name>John Hancock</name>
 <phoneNumbers SOAP-ENC:arrayType="xyz:phoneNumber[2]">
 <phoneNumber>206-555-1212</phoneNumber>
 <phoneNumber>1-888-123-4567</phoneNumber>
 </phoneNumbers>
</xyz:Person>

Here is another example of a single-reference array value encoded as an embedded
element whose containing element name is the accessor name:

<xyz:PurchaseOrder>
 <CustomerName>Henry Ford</CustomerName>
 <ShipTo>
 <Street>5th Ave</Street>
 <City>New York</City>
 <State>NY</State>
 <Zip>10010</Zip>
 </ShipTo>
 <PurchaseLineItems SOAP-ENC:arrayType="Order[2]">
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
 </PurchaseLineItems>
</xyz:PurchaseOrder>

http://www.w3.org/TR/SOAP/ (30 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

5.4.2.1 Partially Transmitted Arrays

SOAP provides support for partially transmitted arrays, known as "varying" arrays in some
contexts [12]. A partially transmitted array indicates in an "SOAP-ENC:offset" attribute the
zero-origin offset of the first element transmitted. If omitted, the offset is taken as zero.

The following is an example of an array of size five that transmits only the third and fourth
element counting from zero:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[5]" SOAP-
ENC:offset="[2]">
 <item>The third element</item>
 <item>The fourth element</item>
</SOAP-ENC:Array>

5.4.2.2 Sparse Arrays

SOAP provides support for sparse arrays. Each element representing a member value
contains a "SOAP-ENC:position" attribute that indicates its position within the array. The
following is an example of a sparse array of two-dimensional arrays of strings. The size is 4
but only position 2 is used:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[,][4]">
 <SOAP-ENC:Array href="#array-1" SOAP-ENC:position="[2]"/>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="array-1" SOAP-
ENC:arrayType="xsd:string[10,10]">
 <item SOAP-ENC:position="[2,2]">Third row, third col</item>
 <item SOAP-ENC:position="[7,2]">Eighth row, third col</item>
</SOAP-ENC:Array>

If the only reference to array-1 occurs in the enclosing array, this example could also have
been encoded as follows:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[,][4]">
 <SOAP-ENC:Array SOAP-ENC:position="[2]" SOAP-
ENC:arrayType="xsd:string[10,10]>
 <item SOAP-ENC:position="[2,2]">Third row, third col</item>
 <item SOAP-ENC:position="[7,2]">Eighth row, third
col</item>
 </SOAP-ENC:Array>
</SOAP-ENC:Array>

5.4.3 Generic Compound Types

http://www.w3.org/TR/SOAP/ (31 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

The encoding rules just cited are not limited to those cases where the accessor names are
known in advance. If accessor names are known only by inspection of the immediate values
to be encoded, the same rules apply, namely that the accessor is encoded as an element
whose name matches the name of the accessor, and the accessor either contains or
references its value. Accessors containing values whose types cannot be determined in
advance MUST always contain an appropriate xsi:type attribute giving the type of the value.

Similarly, the rules cited are sufficient to allow serialization of compound types having a
mixture of accessors distinguished by name and accessors distinguished by both name and
ordinal position. (That is, having some accessors repeated.) This does not require that any
schema actually contain such types, but rather says that if a type-model schema does have
such types, a corresponding XML syntactic schema and instance may be generated.

<xyz:PurchaseOrder>
 <CustomerName>Henry Ford</CustomerName>
 <ShipTo>
 <Street>5th Ave</Street>
 <City>New York</City>
 <State>NY</State>
 <Zip>10010</Zip>
 </ShipTo>
 <PurchaseLineItems>
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
 </PurchaseLineItems>
</xyz:PurchaseOrder>

Similarly, it is valid to serialize a compound value that structurally resembles an arrray but is
not of type (or subtype) SOAP-ENC:Array. For example:

<PurchaseLineItems>
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>

http://www.w3.org/TR/SOAP/ (32 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 </Order>
</PurchaseLineItems>

5.5 Default Values

An omitted accessor element implies either a default value or that no value is known. The
specifics depend on the accessor, method, and its context. For example, an omitted
accessor typically implies a Null value for polymorphic accessors (with the exact meaning of
Null accessor-dependent). Likewise, an omitted Boolean accessor typically implies either a
False value or that no value is known, and an omitted numeric accessor typically implies
either that the value is zero or that no value is known.

5.6 SOAP root Attribute

The SOAP root attribute can be used to label serialization roots that are not true roots of an
object graph so that the object graph can be deserialized. The attribute can have one of two
values, either "1" or "0". True roots of an object graph have the implied attribute value of "1".
Serialization roots that are not true roots can be labeled as serialization roots with an
attribute value of "1" An element can explicitly be labeled as not being a serialization root
with a value of "0".

The SOAP root attribute MAY appear on any subelement within the SOAP Header and
SOAP Body elements. The attribute does not have a default value.

6. Using SOAP in HTTP

This section describes how to use SOAP within HTTP with or without using the HTTP
Extension Framework. Binding SOAP to HTTP provides the advantage of being able to use
the formalism and decentralized flexibility of SOAP with the rich feature set of HTTP.
Carrying SOAP in HTTP does not mean that SOAP overrides existing semantics of HTTP
but rather that the semantics of SOAP over HTTP maps naturally to HTTP semantics.

SOAP naturally follows the HTTP request/response message model providing SOAP
request parameters in a HTTP request and SOAP response parameters in a HTTP
response. Note, however, that SOAP intermediaries are NOT the same as HTTP
intermediaries. That is, an HTTP intermediary addressed with the HTTP Connection header
field cannot be expected to inspect or process the SOAP entity body carried in the HTTP
request.

HTTP applications MUST use the media type "text/xml" according to RFC 2376 [3] when
including SOAP entity bodies in HTTP messages.

http://www.w3.org/TR/SOAP/ (33 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

6.1 SOAP HTTP Request

Although SOAP might be used in combination with a variety of HTTP request methods, this
binding only defines SOAP within HTTP POST requests (see section 7 for how to use
SOAP for RPC and section 6.3 for how to use the HTTP Extension Framework).

6.1.1 The SOAPAction HTTP Header Field

The SOAPAction HTTP request header field can be used to indicate the intent of the SOAP
HTTP request. The value is a URI identifying the intent. SOAP places no restrictions on the
format or specificity of the URI or that it is resolvable. An HTTP client MUST use this header
field when issuing a SOAP HTTP Request.

soapaction = "SOAPAction" ":" [<"> URI-reference <">]
URI-reference = <as defined in RFC 2396 [4]>

The presence and content of the SOAPAction header field can be used by servers such as
firewalls to appropriately filter SOAP request messages in HTTP. The header field value of
empty string ("") means that the intent of the SOAP message is provided by the HTTP
Request-URI. No value means that there is no indication of the intent of the message.

Examples:

SOAPAction: "http://electrocommerce.org/abc#MyMessage"
SOAPAction: "myapp.sdl"
SOAPAction: ""
SOAPAction:

6.2 SOAP HTTP Response

SOAP HTTP follows the semantics of the HTTP Status codes for communicating status
information in HTTP. For example, a 2xx status code indicates that the client's request
including the SOAP component was successfully received, understood, and accepted etc.

In case of a SOAP error while processing the request, the SOAP HTTP server MUST issue
an HTTP 500 "Internal Server Error" response and include a SOAP message in the
response containing a SOAP Fault element (see section 4.4) indicating the SOAP
processing error.

6.3 The HTTP Extension Framework

A SOAP message MAY be used together with the HTTP Extension Framework [6] in order

http://www.w3.org/TR/SOAP/ (34 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

to identify the presence and intent of a SOAP HTTP request.

Whether to use the Extension Framework or plain HTTP is a question of policy and
capability of the communicating parties. Clients can force the use of the HTTP Extension
Framework by using a mandatory extension declaration and the "M-" HTTP method name
prefix. Servers can force the use of the HTTP Extension Framework by using the 510 "Not
Extended" HTTP status code. That is, using one extra round trip, either party can detect the
policy of the other party and act accordingly.

The extension identifier used to identify SOAP using the Extension Framework is

http://schemas.xmlsoap.org/soap/envelope/

6.4 SOAP HTTP Examples

Example 3 SOAP HTTP Using POST

POST /StockQuote HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "http://electrocommerce.org/abc#MyMessage"

<SOAP-ENV:Envelope...

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope...

Example 4 SOAP Using HTTP Extension Framework

M-POST /StockQuote HTTP/1.1
Man: "http://schemas.xmlsoap.org/soap/envelope/"; ns=NNNN
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
NNNN-SOAPAction: "http://electrocommerce.org/abc#MyMessage"

<SOAP-ENV:Envelope...

HTTP/1.1 200 OK
Ext:
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

http://www.w3.org/TR/SOAP/ (35 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

<SOAP-ENV:Envelope...

7. Using SOAP for RPC

One of the design goals of SOAP is to encapsulate and exchange RPC calls using the
extensibility and flexibility of XML. This section defines a uniform representation of remote
procedure calls and responses.

Although it is anticipated that this representation is likely to be used in combination with the
encoding style defined in section 5 other representations are possible. The SOAP
encodingStyle attribute (see section 4.3.2) can be used to indicate the encoding style of the
method call and or the response using the representation described in this section.

Using SOAP for RPC is orthogonal to the SOAP protocol binding (see section 6). In the
case of using HTTP as the protocol binding, an RPC call maps naturally to an HTTP request
and an RPC response maps to an HTTP response. However, using SOAP for RPC is not
limited to the HTTP protocol binding.

To make a method call, the following information is needed:

● The URI of the target object

● A method name

● An optional method signature

● The parameters to the method

● Optional header data

SOAP relies on the protocol binding to provide a mechanism for carrying the URI. For
example, for HTTP the request URI indicates the resource that the invocation is being made
against. Other than it be a valid URI, SOAP places no restriction on the form of an address
(see [4] for more information on URIs).

7.1 RPC and SOAP Body

RPC method calls and responses are both carried in the SOAP Body element (see section
4.3) using the following representation:

● A method invocation is modelled as a struct.

● The method invocation is viewed as a single struct containing an accessor for each

http://www.w3.org/TR/SOAP/ (36 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

[in] or [in/out] parameter. The struct is both named and typed identically to the method
name.

● Each [in] or [in/out] parameter is viewed as an accessor, with a name corresponding
to the name of the parameter and type corresponding to the type of the parameter.
These appear in the same order as in the method signature.

● A method response is modelled as a struct.

● The method response is viewed as a single struct containing an accessor for the
return value and each [out] or [in/out] parameter. The first accessor is the return value
followed by the parameters in the same order as in the method signature.

● Each parameter accessor has a name corresponding to the name of the parameter
and type corresponding to the type of the parameter. The name of the return value
accessor is not significant. Likewise, the name of the struct is not significant.
However, a convention is to name it after the method name with the string
"Response" appended.

● A method fault is encoded using the SOAP Fault element (see section 4.4). If a
protocol binding adds additional rules for fault expression, those also MUST be
followed.

As noted above, method and response structs can be encoded according to the rules in
section 5, or other encodings can be specified using the encodingStyle attribute (see section
4.1.1).

Applications MAY process requests with missing parameters but also MAY return a fault.

Because a result indicates success and a fault indicates failure, it is an error for the method
response to contain both a result and a fault.

7.2 RPC and SOAP Header

Additional information relevant to the encoding of a method request but not part of the
formal method signature MAY be expressed in the RPC encoding. If so, it MUST be
expressed as a subelement of the SOAP Header element.

An example of the use of the header element is the passing of a transaction ID along with a
message. Since the transaction ID is not part of the signature and is typically held in an
infrastructure component rather than application code, there is no direct way to pass the
necessary information with the call. By adding an entry to the headers and giving it a fixed
name, the transaction manager on the receiving side can extract the transaction ID and use
it without affecting the coding of remote procedure calls.

http://www.w3.org/TR/SOAP/ (37 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

8. Security Considerations

Not described in this document are methods for integrity and privacy protection. Such issues
will be addressed more fully in a future version(s) of this document.

9. References

[1] S. Bradner, "The Internet Standards Process -- Revision 3", RFC2026, Harvard
University, October 1996

[2] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119,
Harvard University, March 1997

[3] E. Whitehead, M. Murata, "XML Media Types", RFC2376, UC Irvine, Fuji Xerox Info.
Systems, July 1998

[4] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax", RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[5] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee, "Hypertext Transfer
Protocol -- HTTP/1.1", RFC 2616, U.C. Irvine, DEC W3C/MIT, DEC, W3C/MIT, W3C/MIT,
January 1997

[6] H. Nielsen, P. Leach, S. Lawrence, "An HTTP Extension Framework", RFC 2774,
Microsoft, Microsoft, Agranat Systems

[7] W3C Recommendation "The XML Specification"

[8] W3C Recommendation "Namespaces in XML"

[9] W3C Working Draft "XML Linking Language". This is work in progress.

[10] W3C Working Draft "XML Schema Part 1: Structures". This is work in progress.

[11] W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress.

[12] Transfer Syntax NDR, in "DCE 1.1: Remote Procedure Call"

[13] N. Freed, N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC2045, Innosoft, First Virtual, November 1996

http://www.w3.org/TR/SOAP/ (38 of 42) [12/17/2001 10:21:42 AM]

http://www.normos.org/ietf/rfc/rfc2026.txt
http://www.normos.org/ietf/rfc/rfc2119.txt
http://www.normos.org/ietf/rfc/rfc2376.txt
http://www.normos.org/ietf/rfc/rfc2396.txt
http://www.normos.org/ietf/rfc/rfc2616.txt
http://www.normos.org/ietf/rfc/rfc2774.txt
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.normos.org/ietf/rfc/rfc2045.txt

Simple Object Access Protocol (SOAP) 1.1

A. SOAP Envelope Examples

A.1 Sample Encoding of Call Requests

Example 5 Similar to Example 1 but with a Mandatory Header

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="some-URI"
 SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DEF</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 6 Similar to Example 1 but with multiple request parameters

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceDetailed

http://www.w3.org/TR/SOAP/ (39 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 xmlns:m="Some-URI">
 <Symbol>DEF</Symbol>
 <Company>DEF Corp</Company>
 <Price>34.1</Price>
 </m:GetLastTradePriceDetailed>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.2 Sample Encoding of Response

Example 7 Similar to Example 2 but with a Mandatory Header

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="some-URI"
 xsi:type="xsd:int" mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse
 xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 8 Similar to Example 2 but with a Struct

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

http://www.w3.org/TR/SOAP/ (40 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse
 xmlns:m="Some-URI">
 <PriceAndVolume>
 <LastTradePrice>
 34.5
 </LastTradePrice>
 <DayVolume>
 10000
 </DayVolume>
 </PriceAndVolume>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 9 Similar to Example 2 but Failing to honor Mandatory Header

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:MustUnderstand</faultcode>
 <faultstring>SOAP Must Understand
Error</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 10 Similar to Example 2 but Failing to handle Body

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Error</faultstring>
 <detail>

http://www.w3.org/TR/SOAP/ (41 of 42) [12/17/2001 10:21:42 AM]

Simple Object Access Protocol (SOAP) 1.1

 <e:myfaultdetails xmlns:e="Some-URI">
 <message>
 My application didn't work
 </message>
 <errorcode>
 1001
 </errorcode>
 </e:myfaultdetails>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

http://www.w3.org/TR/SOAP/ (42 of 42) [12/17/2001 10:21:42 AM]

	w3.org
	Simple Object Access Protocol (SOAP) 1.1

